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1.1 Introduction

Supervised machine learning techniques have already been widely studied and applied
to various real-world applications. However, most existing supervised algorithms work well
only under a common assumption: the training and test data are represented by the same
features and drawn from the same distribution. Furthermore, the performance of these
algorithms heavily rely on collecting high quality and sufficient labeled training data to train
a statistical or computational model to make predictions on the future data [86, 57, 132].
However, in many real-world scenarios, labeled training data are in short supply or can only
be obtained with expensive cost. This problem has become a major bottleneck of making
machine learning methods more applicable in practice.

In the last decade, semi-supervised learning [167, 27, 89, 20, 63] techniques have been
proposed to address the labeled data sparsity problem by making use of a large amount of
unlabeled data to discover an intrinsic data structure to effectively propagate label informa-
tion. Nevertheless, most semi-supervised methods require that the training data, including
labeled and unlabeled data, and the test data are both from the same domain of interest,
which implicitly assumes the training and test data are still represented in the same feature
space and drawn from the same data distribution.

Instead of exploring unlabeled data to train a precise model, active learning, which is an-
other branch in machine learning for reducing annotation effort of supervised learning, tries
to design an active learner to pose queries, usually in the form of unlabeled data instances
to be labeled by an oracle (e.g., a human annotator). The key idea behind active learning is
that a machine learning algorithm can achieve greater accuracy with fewer training labels if
it is allowed to choose the data from which it learns [71, 121]. However, most active learning
methods assume that there is a budget for the active learner to pose queries in the domain
of interest. In some real-world applications, the budget may be quite limited, which means
that the labeled data queried by active learning may not be sufficient enough to learn an
accurate classifier in the domain of interest.

Transfer learning, in contrast, allows the domains, tasks, and distributions used in train-
ing and testing to be different. The main idea behind transfer learning is to borrow labeled
data or extract knowledge from some related domains to help a machine learning algorithm
to achieve greater performance in the domain of interest [130, 97]. Thus, transfer learning
can be referred to as a different strategy for learning models with minimal human super-
vision, compared to semi-supervised and active learning. In the real world, we can observe
many examples of transfer learning. For example, we may find that learning to recognize ap-
ples might help to recognize pears. Similarly, learning to play the electronic organ may help
facilitate learning the piano. Furthermore, in many engineering applications, it is expensive
or impossible to collect sufficient training data to train models for use in each domain of
interest. It would be more practical if one could reuse the training data which have been
collected in some related domains/tasks or the knowledge that is already extracted from
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2 Data Classification: Algorithms and Applications

TABLE 1.1: Cross-domain sentiment classification examples: reviews of Electronics and
Video Games. Boldfaces are domain-specific words that occur much more frequently in
one domain than in the other one. “+” and “-” denote positive and negative sentiment
respectively.

Electronics Video Games
+ Compact; easy to operate; very good

picture quality; looks sharp!
A very good game! It is action packed
and full of excitement. I am very much
hooked on this game.

+ I purchased this unit from Circuit City
and I was very excited about the quality
of the picture. It is really nice and sharp.

Very realistic shooting action and good
plots. We played this and were hooked.

- It is also quite blurry in very dark set-
tings. I will never buy HP again.

The game is so boring. I am extremely
unhappy and will probably never buy
UbiSoft again.

some related domains/tasks to learn a precise model for use in the domain of interest. In
such cases, knowledge transfer or transfer learning between tasks or domains become more
desirable and crucial.

Many diverse examples in knowledge engineering can be found where transfer learning
can truly be beneficial. One example is sentiment classification, where our goal is to auto-
matically classify reviews on a product, such as a brand of camera, into polarity categories
(e.g., positive, negative or neural). In literature, supervised learning methods [100] have
proven to be promising and widely used in sentiment classification. However, these methods
are domain dependent, which means that a model built on one domain (e.g., reviews on a
specific product with annotated polarity categories) by using these methods may perform
poorly on another domain (e.g., reviews on another specific product without polarity cate-
gories). The reason is that one may use different domain-specific words to express opinions
in different domains. Table 1.1 shows several review sentences of two domains: Electron-
ics and Video Games. In the Electronics domain, one may use the words like “compact”
and “sharp” to express positive sentiment and use “blurry” to express negative sentiment.
While in the Video Game domain, the words like “hooked” and “realistic” indicate positive
opinions and the word “boring” indicates negative opinion. Due to the mismatch of domain-
specific words between domains, a sentiment classifier trained on one domain may not work
well when directly applied to other domains. Therefore, cross-domain sentiment classifica-
tion algorithms are highly desirable to reduce domain dependency and manually labeling
cost by transferring knowledge from related domains to the domain of interest [18, 92, 51].

The need for transfer learning may also arise in applications of wireless sensor networks,
where wireless data can be easily outdated over time or very different received by different
devices. In these cases, the labeled data obtained in one time period or on one device may
not follow the same distribution in a later time period or on another device. For example,
in indoor WiFi-based localization, which aims to detect a mobile’s current location based
on previously collected WiFi data, it is very expensive to calibrate WiFi data for building
a localization model in a large-scale environment because a user needs to label a large
collection of WiFi signal data at each location. However, the values of WiFi signal strength
may be a function of time, device or other dynamic factors. As shown in Figure 1.1, values of
received signal strength (RSS) may differ across different time periods and mobile devices.
As a result, a model trained in one time period or on one device may estimate locations
poorly in another time period or on another device. To reduce the re-calibration effort, we
might wish to adapt the localization model trained in one time period (the source domain)
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(a) WiFi RSS received by device A in T1.
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(b) WiFi RSS received by device A in T2.

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

(c) WiFi RSS received by device B in T1.
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(d) WiFi RSS received by device B in T2.

FIGURE 1.1: Contours of RSS values over a 2-dimensional environment collected from a
same access point in different time periods and received by different mobile devices. Different
colors denote different values of signal strength.

for a new time period (the target domain), or to adapt the localization model trained on a
mobile device (the source domain) for a new mobile device (the target domain) with little
or without additional calibration [152, 91, 98, 165].

As a third example, transfer learning has shown to be promising for defect prediction
in the area of software engineering, where the goal is to build a prediction model from data
sets mined from software repositories, and the model is used to identify software defects.
In the past few years, numerous effective software defect prediction approaches based on
supervised machine learning techniques have been proposed and received a tremendous
amount of attention [66, 83]. In practice, cross-project defect prediction is necessary. New
projects often do not have enough defect data to build a prediction model. This cold-start is
a well-known problem for recommender systems [116] and can be addressed by using cross-
project defect prediction to build a prediction model using data from other projects. The
model is then applied to new projects. However, as reported by some researchers that cross-
project defect prediction often yields poor performance [170]. One of the main reasons for the
poor cross-project prediction performance is the difference between the data distributions
of the source and target projects. To improve the cross-project prediction performance with
little additional human supervision, transfer learning techniques are again desirable, and
have proven to be promising [87].

Generally speaking, transfer learning can be classified into two different fields: 1) transfer
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learning for classification, regression and clustering problems [97], and 2) transfer learning
for reinforcement learning tasks [128]. In this chapter, we focus on transfer learning in data
classification and its real-world applications. Furthermore, as first introduced in a survey
article [97], there are three main research issues in transfer learning: 1) What to transfer, 2)
How to transfer, and 3) When to transfer. Specifically, “What to transfer” asks which part
of knowledge can be extracted and transferred across domains or tasks. Some knowledge
is domain- or task- specific, which may not be observed in other domains or tasks, while
some knowledge is common shared by different domains or tasks, which can be treated as a
bridge for knowledge transfer across domains or tasks. After discovering which knowledge
can be transferred, learning algorithms need to be developed to transfer the knowledge,
which corresponds to the “how to transfer” issue. Different knowledge-transfer strategies
lead to specific transfer learning approaches. “When to transfer” asks in which situations,
transferring skills should be done. Likewise, we are interested in knowing in which situations,
knowledge should not be transferred. In some situations, when the source domain and target
domain are not related to each other, brute-force transfer may be unsuccessful. In the worst
case, it may even hurt the performance of learning in the target domain, a situation which is
often referred to as negative transfer. Therefore, the goal of “When to transfer” is to avoid
negative transfer and then ensure positive transfer.

The rest of this chapter is organized as follows. In Section 1.2, we start by giving an
overview of transfer learning including its brief history, definitions and different learning
settings. In Sections 1.3-1.4, we summarize approaches into different categories based on two
transfer learning settings, namely homogenous transfer learning and heterogeneous transfer
learning. In Sections 1.5-1.6, we discuss the negative transfer issue and other research issues
of transfer learning. After that, we show diverse real-world applications of transfer learning
in Section 1.7. Finally, we give concluding remarks in Section 1.8.

1.2 Transfer Learning Overview

1.2.1 Background

The study of transfer learning is motivated by the fact that people can intelligently apply
knowledge learned previously to solve new problems faster or with better solutions [47].
For example, if one is good at coding in C++ programming language, he/she may learn
Java programming language fast. This is because both C++ and Java are object-oriented
programming (OOP) languages, and share similar programming motivations. As another
example, if one is good at playing table tennis, he/she may learn playing tennis fast because
the skill sets of these two sports are overlapping. Formally, from a psychological point of
view, the definition of transfer learning or learning of transfer is the study of the dependency
of human conduct, learning, or performance on prior experience. More than 100 years ago,
researchers has already explored how individuals would transfer in one context to another
context that share similar characteristics [129].

The fundamental motivation for transfer learning in the field of machine learning is the
need for lifelong machine learning methods that retain and reuse previously learned knowl-
edge such that intelligent agencies can adapt to new environment or novel tasks effectively
and efficiently with little human supervision. Informally, the definition of transfer learning
in the field of machine learning is the ability of a system to recognize and apply knowledge
and skills learned in previous domains or tasks to new domains or novel domains, which
share some commonality.
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1.2.2 Notations and Definitions

In this section, we follow the notations introduced in [97] to describe the problem state-
ment of transfer learning. A domain D consists of two components: a feature space X and
a marginal probability distribution P (x), where x ∈ X . In general, if two domains are
different, then they may have different feature spaces or different marginal probability dis-
tributions. Given a specific domain, D = {X , P (x)}, a task T consists of two components: a
label space Y and a predictive function f(·) (denoted by T = {Y, f(·)}). The function f(·)
is a predictive function that can be used to make predictions on unseen instances {x∗}’s.
From a probabilistic viewpoint, f(x) can be written as P (y|x). In classification, labels can
be binary, i.e., Y = {−1,+1}, or discrete values, i.e., multiple classes.

For simplicity, we only consider the case where there is one source domain DS , and
one target domain DT , as this is by far the most popular of the research works in the
literature. The issue of knowledge transfer from multiple source domains will be discussed
in Section 1.6. More specifically, we denote DS = {(xSi

, ySi
)}nS
i=1 the source domain data,

where xSi
∈ XS is the data instance and ySi

∈ YS is the corresponding class label. Similarly,
we denote DT = {(xTi , yTi)}

nT
i=1 the target domain data, where the input xTi is in XT and

yTi ∈ YT is the corresponding output. In most cases, 0 ≤ nT � nS . Based on the notations
defined above, the definition of transfer learning can be defined as follows [97],

Definition 1. Given a source domain DS and learning task TS, a target domain DT and
learning task TT , transfer learning aims to help improve the learning of the target predictive
function fT (·) in DT using the knowledge in DS and TS, where DS 6= DT , or TS 6= TT .

In the above definition, a domain is a pair D = {X , P (x)}. Thus the condition DS 6= DT
implies that either XS 6= XT or P (xS) 6= P (xT ). Similarly, a task is defined as a pair
T = {Y, P (y|x)}. Thus the condition TS 6= TT implies that either YS 6= YT or P (yS |xS) 6=
P (yT |xT ). When the target and source domains are the same, i.e. DS = DT , and their
learning tasks are the same, i.e., TS = TT , the learning problem becomes a traditional
machine learning problem. Based on whether the feature spaces or label spaces are identical
or not, we can further categorize transfer learning into two settings: 1) homogenous transfer
learning, and 2) heterogenous transfer learning. In the following two sections, we give the
definitions of these two settings and review their representative methods respectively.

1.3 Homogenous Transfer Learning

In this section, we first give an definition of homogenous transfer learning as follows,

Definition 2. Given a source domain DS and learning task TS, a target domain DT and
learning task TT , homogenous transfer learning aims to help improve the learning of the
target predictive function fT (·) in DT using the knowledge in DS and TS, where XS

⋂
XT 6= ∅

and YS = YT , but P (xS) 6= P (xT ) or P (yS |xS) 6= P (yT |xT ).

Based on the above definition, in homogenous transfer learning, the feature spaces be-
tween domains are overlapping, and the label spaces between tasks are identical. The differ-
ence between domains or tasks is caused by the marginal distributions or predictive distribu-
tions. Approaches to homogenous transfer learning can be summarized into four categories:
1) instance-based approach, 2) feature-representation-based approach, 3) model-parameter-
based approach, and 4) relational-information-based approach. In the following sections, we
describe the motivations of these approaches and introduce some representative methods of
each approach.
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1.3.1 Instance-based Approach

A motivation of the instance-based approach is that although the source domain labeled
data cannot be reused directly, part of them can be reused for the target domain after
re-weighting or re-sampling. An assumption behind the instance-based approach is that the
source and target domains have a lot of overlapping features, which means that the domains
share the same or similar support. Based on whether labeled data are required or not in the
target domain, the instance-based approach can be further categorized into two contexts:
1) no target labeled data are available, and 2) a few target labeled data are available.

1.3.1.1 Case I: No Target Labeled Data

In the first context, no labeled data are required but a lot of unlabeled data are assumed
to be available in the target domain. In this context, most instance-based methods are
deployed based on an assumption that PS(y|x) = PT (y|x), and motivated by importance
sampling. To explain why importance sampling is crucial for this context of transfer learning,
we first review the learning framework of empirical risk minimization (ERM) [132]. Given
a task of interest, i.e., the target task, the goal of ERM is to learn an optimal parameter θ∗

by minimizing the expected risk as follows,

θ∗ = arg min
θ∈Θ

E(x,y)∈PT
[l(x, y, θ)], (1.1)

where l(x, y, θ) is a loss function that depends on the parameter θ. Since no labeled data
are assumed to be available in the target domain, it is impossible to optimize (1.1) over
target domain labeled data. It can be proved that the optimization problem (1.1) can be
rewritten as follows,

θ∗ = arg min
θ∈Θ

E(x,y)∼PS

[
PT (x, y)

PS(x, y)
l(x, y, θ)

]
, (1.2)

which aims to learn the optimal parameter θ∗ by minimizing the weighted expected risk
over source domain labeled data. As assumed PS(y|x) = PT (y|x), by decomposing the joint

distribution P (x, y) = P (y|x)P (x), we obtain PT (x,y)
PS(x,y) = PT (x)

PS(x) . Hence, (1.2) can be further
rewritten as

θ∗ = arg min
θ∈Θ

E(x,y)∼PS

[
PT (x)

PS(x)
l(x, y, θ)

]
, (1.3)

where a weight of a source domain instance x is the ratio of the target and source domain
marginal distributions at the data point x. Given a sample of source domain labeled data

{(xSi
, ySi

)}nS
i=1, by denoting β(x) = PT (x)

PS(x) , a regularized empirical objective of (1.3) can be

formulated as

θ∗ = arg min
θ∈Θ

nS∑
i=1

β(xSi
)l(xSi

, ySi
, θ) + λΩ(θ), (1.4)

where Ω(θ) is a regularization term to avoid overfitting on the training sample. Therefore, a
research issue on applying the ERM framework to transfer learning is how to estimate the
weights {β(x)}’s. Intuitively, a simple solution is to first estimate PT (x) and PS(x) respec-

tively, and thus calculate the ratio PT (x)
PS(x) for each source domain instance xSi

. However, den-

sity estimations on PT (x) and PS(x) are difficult, especially when data are high-dimensional

and the data size is small. An alterative solution is to estimate PT (x)
PS(x) directly.

In literature, there exist various ways to estimate PT (x)
PS(x) directly. Here we introduce three
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representative methods. For more information on this context, readers may refer to [104].
Zadrozny [158] assumed that the difference in data distributions is caused by the data
generation process. Specifically, the source domain data are assumed to be sampled from
the target domain data following a rejection sampling process. Let s ∈ {0, 1} be a selector
variable to denote whether an instance in the target domain is selected to generate the
source domain data or not, i.e., s = 1 denotes the instance is selected, otherwise unselected.
In this way, the distribution of the selector variable maps the target distribution onto the
source distribution as follows,

PS(x) ∝ PT (x)P (s = 1|x).

Therefore, the weight β(x) is propositional to 1
P (s=1|x) . To estimate 1

P (s=1|x) , Zadrozny

proposed to consider all source domain data with labels 1’s and all target domain data with
labels 0’s, and train a probabilistic classification model on this pseudo classification task to
estimate P (s = 1|x).

Huang et al. [59] proposed a different algorithm known as kernel-mean matching (KMM)

to learn PS(x)
PT (x) directly by matching the means between the source and target domain data

in a reproducing-kernel Hilbert space (RKHS) [117]. Specifically, KMM makes use of Max-
imum Mean Discrepancy (MMD) introduced by Gretton et al. [52] as a distance measure
between distributions. Given two samples, based on MMD, the distance between two sample
distributions is simply the distance between the two mean elements in a RKHS. Therefore,
the objective of KMM can be written as

arg min
β

∥∥∥∥∥∥ 1

nS

nS∑
i=1

β(xSi
)Φ(xSi

)− 1

nT

nT∑
j=1

Φ(xTj
)

∥∥∥∥∥∥
H

, (1.5)

s.t β(xSi
) ∈ [0, B] and

∣∣∣∣∣ 1

nS

nS∑
i=1

β(xSi
)− 1

∣∣∣∣∣ ≤ ε.
where B is the parameter to limit the discrepancy between PS(x) and PT (x), and ε is
the nonnegative parameter to ensure the reweighted PS(x) to be close to a probability
distribution. It can be showed that the optimization problem (1.5) can be transformed to
a quadratic programming (QP) problem, and the optimal solutions {β(xSi

)}’s of (1.5) are

equivalent to the ratio values
{
PS(xSi

)

PT (xSi
)

}
’s of (1.3) to be estimated.

As a third method, Sugiyama et al. [127] assumed that the ratio β(x) can be estimated
by the following linear model,

β̃(x) =

b∑
`=1

α`ψ`(x),

where {ψ`(x)}b`=1 are the basic functions which are predefined, and the coefficients {α`}b`=1

are the parameters to be estimated. In this way, the problem of estimating β(x) is trans-

formed to the problem of estimating the parameters {α`}b`=1. By denoting P̃T (x) =

β̃(x)PS(x), the parameters can be learned by solving the following optimization problem,

arg min
{α`}b`=1

l(PT (x), P̃T (x)),

where l(·) is a loss function of the estimated target distribution P̃T (x) to the ground truth
target distribution PT (x). Different loss functions lead to various specific algorithms. For
instance, Sugiyama et al. [127] proposed to use the Kullback-Leibler divergence as the
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loss function, while Kanamori et al. [65] proposed to use the least-squared loss as the loss
function. Note that the ground truth of PS(x) and PT (x) are unknown. However, as shown
in [127, 65], PS(x) and PT (x) can be eliminated when optimizing the parameters {α`}b`=1.

1.3.1.2 Case II: A Few Target Labeled Data

In the second context of the instance-based approach, a few target labeled data are
assumed to be available. Different from the approaches in the first context, in this context,
most approaches are proposed to weight the source domain data based on their contributions
to the classification accuracy for the target domain.

Wu and Dietterich [142] integrated the source domain labeled data together with a few
target domain labeled data into the standard Support Vector Machine (SVM) framework
for improving the classification performance for the target domain as follows,

arg min
w,ξS ,ξT

1

2
‖w‖22 + λT

nTl∑
i=1

ξTi
+ λS

nS∑
i=1

γiξSi
, (1.6)

s.t. ySiw
>xSi ≥ 1− ξSi , ξSi ≥ 0, i = 1, ..., nS ,

yTiw
>xTi ≥ 1− ξTi , ξTi ≥ 0, i = 1, ..., nTl

,

where nTl
is the number of target domain labeled data, w is the model parameter, ξS and ξT

are the slack variables to absorb errors on the source and target domain data respectively,
λS and λT are the tradeoff parameters to balance the impact of different terms in the
objective, and γi is the weight on the source domain instance xSi . There are various ways
to set the values of {γi}’s. In [142], Wu and Dietterich proposed to simply set γi = 1 for
each data point in the source domain. Jiang and Zhai [62] proposed a heuristic method to
remove the “misleading” instances from the source domain, which is equivalent to setting
γi = 0 for all “misleading” source domain instances and γi = 1 for the remaining instances.
Note that the basic classifier used in [62] is a probabilistic model instead of SVM, but the
idea is similar.

Dai et al. [38] proposed a boosting algorithm, known as TrAdaBoost, for transfer learn-
ing. TrAdaBoost is an extension of the AdaBoost algorithm [49]. The basic idea of TrAd-
aBoost attempts to iteratively re-weight the source domain data to reduce the effect of
the “bad” source data while encourage the “good” source data to contribute more to the
target domain. Specifically, for each round of boosting, TrAdaBoost uses the same strategy
as AdaBoost to update weights of the target domain labeled data, while proposes a new
mechanism to decrease the weights of misclassified source domain data.

1.3.2 Feature-representation-based Approach

As described in the previous section, for the instance-based approach, a common as-
sumption is that the source and target domains have a lot of overlapping features. However,
in many real-world applications, the source and target domains may only have some over-
lapping features, which means that many features may only have support in either the
source or target domain. In this case, most instance-based methods may not work well. The
feature-representation-based approach to transfer learning is promising to address this is-
sue. An intuitive idea behind the feature-representation-based approach is to learn a “good”
feature representation for the source and target domains such that based on the new rep-
resentation, source domain labeled data can be reused for the target domain. In this sense,
the knowledge to be transferred across domains is encoded into the learned feature repre-
sentation. Specifically, the feature-representation-based approach aims to learn a mapping



Transfer Learning 9

ϕ(·) such that the difference between the source and target domain data after transforma-
tion, {ϕ(xSi)}’s and {ϕ(xTi)}’s, can be reduced. In general, there are two ways to learn
such a mapping ϕ(·) for transfer learning. One is to encode specific domain or application
knowledge into learning the mapping, the other is to propose a general method to learn the
mapping without taking any domain or application knowledge into consideration.

1.3.2.1 Encoding Specific Knowledge for Feature Learning

In this section, we use sentiment classification as an example to present how to encode
domain knowledge into feature learning. In sentiment classification, a domain denotes a
class of objects or events in the world. For example, different types of products, such as
books, dvds and furniture, can be regarded as different domains. Sentiment data are the
text segments containing user opinions about objects, events and their properties of the
domain. User sentiment may exist in the form of a sentence, paragraph or article, which is
denoted by xj . Alternatively, it corresponds with a sequence of words v1v2...vxj

, where wi
is a word from a vocabulary V . Here, we represent user sentiment data by a bag of words
with c(vi, xj) to denote the frequency of word vi in xj . Without loss of generality, we use a
unified vocabulary W for all domains, and assume |W | = m.

For each sentiment data xj , there is a corresponding label yj , where yj = +1 if the
overall sentiment expressed in xj is positive, and yj = −1 if the overall sentiment expressed
in xj is negative. A pair of sentiment text and its corresponding sentiment polarity {xj , yj}
is called the labeled sentiment data. If xj has no polarity assigned, it is unlabeled sentiment
data. Note that besides positive and negative sentiment, there are also neutral and mixed
sentiment data in practical applications. Mixed polarity means user sentiment is positive in
some aspects but negative in other ones. Neutral polarity means that there is no sentiment
expressed by users. In this chapter, we only focus on positive and negative sentiment data.

For simplicity, we assume that a sentiment classifier f is a linear function as

y∗ = f(x) = sgn(w>x),

where x ∈ Rm×1, sgn(w>x) = +1 if w>x ≥ 0, otherwise, sgn(w>x) = −1, and w is the
weight vector of the classifier, which can be learned from a set of training data (i.e., pairs
of sentiment data and their corresponding polarity labels).

Consider the example shown in Table 1.1 as an motivating example. We use the standard
bag-of-words representation to represent sentiment data of the Electronics and Video Games
domains. From Table 1.2, we observe that the difference between domains is caused by the
frequency of the domain-specific words. On one hand, the domain-specific words in the
Electronics domain, such as compact, sharp and blurry, cannot be observed in the Video
Games domain. On the other hand, the domain-specific words in the Video Games domain,
such as hooked, realistic and boring, cannot be observed in the Electronics domain. Suppose
that the Electronics domain is the source domain and the Video Games domain is the target
domain. Apparently, based on the three training sentences in the Electronics domain, the
weights of the features compact and sharp are positive, the weight of the feature blurry
are negative, and the weights of the features hooked, realistic and boring can be arbitrary
or zeros if an `1-norm regularization term is performed on w for model training. However,
an ideal weight vector for the Video Games domain are supposed to have positive weights
on the features hooked, realistic and a negative weight on the feature boring. Therefore, a
classifier learned from the Electronics domain may predict poorly or randomly on the Video
Games domain data.

Generally speaking, in sentiment classification, features can be classified into three types:
1) source domain (i.e., the Electronics domain) specific features, such as compact, sharp, and
blurry, 2) target domain (i.e., the Video Game domain) specific features, such as hooked,
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TABLE 1.2: Bag-of-words representations of electronics and video games reviews. Only
domain-specific features are considered.

compact sharp blurry hooked realistic boring
+1 1 1 0 0 0 0

electronics +1 0 1 0 0 0 0
-1 0 0 1 0 0 0

+1 0 0 0 1 0 0
video games +1 0 0 0 1 1 0

-1 0 0 0 0 0 1

realistic, and boring, and 3) domain independent features or pivot features, such as good,
excited, nice, and never buy. Based on these observations, an intuitive idea of feature learning
is to align the source and target domain specific features to generate cluster- or group- based
features by using the domain independent features as a bridge such that the difference
between the source and target domain data based on the new feature representation can be
reduced. For instance, if the domain specific features shown in Table 1.2 can be aligned in
the way presented in Table 1.3, where the feature alignments are used as new features to
represent the data, then apparently, a linear model learned from the source domain (i.e.,
the Electronics domain) can be used to make precise predictions on the target domain data
(i.e., the Video Game domain).

TABLE 1.3: Using feature alignments as new new features to represent cross-domain data.

sharp hooked compact realistic blurry boring
+1 1 1 0

electronics +1 1 0 0
-1 0 0 1

+1 1 0 0
video games +1 1 1 0

-1 0 0 1

Therefore, there are two research issues to be addressed. A first issue is how to identify
domain independent or pivot features. A second issue is how to utilize the domain indepen-
dent features and domain knowledge to align domain specific features from the source and
target domains to generate new features. Here the domain knowledge is that if two senti-
ment words co-occur frequently in one sentence or document, then their sentiment polarities
tend to be the same with a high probability.

For identifying domain independent or pivot features, some researchers have proposed
several heuristic approaches [18, 92]. For instance, Blitzer et al. [18] proposed to select
pivot features based on the term frequency in both the source and target domains and the
mutual dependence between the features and labels in the source domain. The idea is that
a pivot feature should be discriminative to the source domain data and appear frequently in
both the source and target domains. Pan et al. [92] proposed to select domain independent
features based on the mutual dependence between features and domains. Specifically, by
considering all instances in the source domain with labels 1’s and all instances in the target
domain with labels 0’s, the mutual information can be used to measure the dependence
between the features and the constructed domain labels. The motivation is that if a feature
has high mutual dependence to the domains, then it is domain specific. Otherwise, it is
domain independent.

For aligning domain specific features from the source and target domains to generate
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cross-domain features, Biltzer et al. [19] proposed the structural correspondence learning
(SCL) method. SCL is motivated by a multi-task learning algorithm, alternating structure
optimization (ASO) [4], which aims to learn common features underlying multiple tasks.
Specifically, SCL first identifies a set of pivot features of size m, and then treats each pivot
feature as a new output vector to construct a pseudo task with non-pivot features as inputs.
After that, SCL learns m linear classifiers to model the relationships between the non-pivot
features and the constructed output vectors as follows,

yj = sgn(w>j xnp), j = 1, . . . ,m,

where yj is an output vector constructed from a corresponding pivot feature, and xnp is a
vector of non-pivot features. Finally, SCL performs the singular value decomposition (SVD)
on the weight matrix W = [w1 w2 . . . wm] ∈ Rq×m, where q is the number of non-pivot
features, such that W = UDV >, where Uq×r and Vr×m are the matrices of the left and right
singular vectors. The matrix Dr×r is a diagonal matrix consists of non-negative singular
values, which are ranked in non-increasing order. The matrix U>[1:h,:], where h is the number
of features to be learned, is then used as a transformation to align domain-specific features
to generate new features.

Pan et al. [92] proposed the Spectral Feature Alignment (SFA) method for aligning
domain specific features, which shares a similar high-level motivation with SCL. Instead
of constructing pseudo tasks to use model parameters to capture the correlations between
domain-specific and domain-independent features, SFA aims to model the feature correla-
tions using a bipartite graph. Specifically, in the bipartite graph, a set of nodes correspond
to the domain independent features, and the other set of nodes correspond to domain spe-
cific features in either the source or target domain. There exist an edge connecting a domain
specific feature and a domain independent feature, if they co-occur in the same document
or within a predefined window. A number associated on an edge is the total number of
the co-occurrence of the corresponding domain specific and domain independent features
in the source and target domains. The motivation of using bipartite graph to model the
feature correlations is that if two domain specific features have connections to more common
domain independent features in the graph, they tend to be aligned or clustered together
with a higher probability. Meanwhile, if two domain independent features have connections
to more common domain specific features in the graph, they tend to be aligned together
with a higher probability. After the bipartite graph is constructed, the spectral clustering
algorithm [88] is applied on the graph to cluster domain specific features. In this way, the
clusters can be treated as new features to represent cross-domain data.

1.3.2.2 Learning Features by Minimizing Distance between Distributions

In the previous section, we have shown how to encode domain knowledge into feature
learning for transfer learning. However, in many real-work scenarios, domain knowledge
is not available as input. In this case, general approaches to feature learning for transfer
learning are required. In this section, we first introduce a feature learning approach to
transfer learning based on distribution minimization in a latent space.

Note that in many real-world applications, the observed data are controlled by only
a few latent factors. If the two domains are related to each other, they may share some
latent factors (or components). Some of these common latent factors may cause the data
distributions between domains to be different, while others may not. Meanwhile, some of
these factors may capture the intrinsic structure or discriminative information underlying
the original data, while others may not. If one can recover those common latent factors that
do not cause much difference between data distributions and do preserve the properties
of the original data, then one can treat the subspace spanned by these latent factors as
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a bridge to make knowledge transfer possible. Based on this motivation, Pan et al. [90]
proposed a dimensionality reduction algorithm for transfer learning, whose high-level idea
can be formulated as follows,

min
ϕ

Dist(ϕ(XS), ϕ(XT )) + λΩ(ϕ) (1.7)

s.t. constraints on ϕ(XS) and ϕ(XT ),

where ϕ is the mapping to be learned, which maps the original data to a low-dimensional
space. The first term in the objective of (1.7) aims to minimize the distance in distributions
between the source and target domain data, Ω(ϕ) is a regularization term on the mapping
ϕ, and the constraints are to ensure original data properties to be preserved.

Note that, in general, the optimization problem (1.7) is computationally intractable.
To make it computationally solvable, Pan et al. [90] proposed to transform the optimiza-
tion problem (1.7) to a kernel matrix learning problem, resulting in solving a semidefinite
program (SDP). The proposed method is known as Maximum Mean Discrepancy Embed-
ding (MMDE), which is based on the non-parametric measure MMD as introduced in Sec-
tion 1.3.1.1. MMDE has proven to be effective in learning features for transfer learning.
However, it has two major limitations: 1) Since it requires to solve a SDP, its computa-
tional cost is very expensive; 2) Since it formulates the kernel matrix learning problem in
a transductive learning setting, it cannot generalize to out-of-sample instances. To address
the limitations of MMDE, Pan et al. [95, 96] further relaxed the feature learning problem
of MMDE to a generalized eigen-decomposition problem, which is much efficient and easily
generalized to out-of-sample instances. Similarly, motivated by the idea of MMDE, Si et
al. [125] proposed to use the Bregman divergence as the distance measure between sample
distributions to minimize the distance between the source and target domain data in a
latent space.

1.3.2.3 Learning Features Inspired by Multi-task Learning

Besides learning features by minimizing distance in distributions, another important
branch of approaches to learning features for transfer learning is motivated by multi-task
learning [24]. In multi-task learning, given multiple tasks with a few labeled training data
for each task, the goal is to jointly learn individual classifiers for different tasks by exploring
latent common features shared by the tasks. Without loss of generality, for each task, we
assume that the corresponding classifier is linear, and can be written as

f(x) = 〈θ, (U>x)〉 = θ>(U>x),

where θ ∈ Rk×1 is the individual model parameter to be learned, and U ∈ Rm×k is the
transformation shared by all task data, which maps original data to a k-dimensional feature
space, and needs to be learned as well. Note that the setting of multi-task learning is
different from that of transfer learning, where a lot of labeled training data are assumed
to be available in a source domain, and the focus is to learn a more precise model for the
target domain. However, the idea of common feature learning under different tasks can
still be borrowed for learning features for transfer learning by assuming that a few labeled
training data in the target domain are available. The high-level objective of feature learning
based on multi-task learning can be formulated as follows,

min
U,θS ,θT

∑
t∈{S,T}

nt∑
i=1

l(U>xti , yti , θt) + λΩ(Θ, U)

s.t. constraints on U, (1.8)
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where Θ = [θS θT ] ∈ Rk×2 and Ω(Θ, U) is a regularization term on Θ and U . Based on
different forms of Ω(Θ, U) and different constraints on U , approaches to learning features
based on multi-task learning can be generally classified into two categories. In a first category
of approaches, U is assumed to be full rank, which means that m = k, and Θ is sparse. A
motivation behind this is that the full-rank U is only to transform the data from original
space to another space of the same dimensionality, where a few good features underlying
different tasks can be found potentially, and the sparsity assumption on Θ is to select such
good features and ignore those that are not helpful for the source and target tasks. One of
the representative approaches in this category was proposed by Argyriou et al. [6], where
the ‖ · ‖2,1 norm is proposed to regularize the matrix form of the model parameters Θ,1 and
U is assumed to be orthogonal, which means that U>U = UU> = I. As shown in [6], the
optimization problem can be transformed to a convex optimization formulation and solved
efficiently. In a follow-up work, Argyriou et al. [8] proposed a new spectral function on Θ
for multi-task feature learning.

In a second category of approaches, U is assumed to be row rank, which means that
k < m, or k � m in practice, and there are no sparsity assumptions on Θ. In this way, U
transforms the original data to good common feature representations directly. Representative
approaches in this category include the Alternating Structure Optimization (ASO) method,
which has been mentioned in Section 1.3.2.1. As described, in ASO, the SVD is performed
on the matrix of the source and target model-parameters to recover a low-dimensional
predictive space as a common feature space. The ASO method has been applied successfully
to several applications [18, 5]. However, the proposed optimization problem is non-convex
and thus a global optimum is not guaranteed to be achieved. Chen et al. [30] presented an
improved formulation, called iASO, by proposing a novel regularization term on U and Θ.
Furthermore, in order to convert the new formulation into a convex formulation, in [30],
Chen et al. proposed a convex alternating structure optimization (cASO) algorithm to solve
the optimization problem.

1.3.2.4 Learning Features Inspired by Self-taught Learning

Besides borrowing ideas from multi-task learning, a third branch of feature learning ap-
proaches to transfer learning is inspired by self-taught learning [105]. In self-taught learning,
a huge number of unlabeled data are assumed to be available, whose labels can be different
from those of the task of interest. The goal is to learn a set of higher-level features such that
based on these higher-level features, a classifier trained on a few labeled training data can
perform well on the task of interest. In this branch of approaches, a common assumption
is that large-scale unlabeled or labeled source domain data, which can come from a single
source or multiple sources, are available as inputs, and a few labeled data in the target
domain are available as well. Most methods consist of three steps: 1) To learn higher-level
features from the large-scale source domain data with or without their label information; 2)
To represent the target domain data based on the higher-level features; 3) To train a classi-
fier on the new representations of the target domain data with corresponding labels. A key
research issue in these approaches is how to learn higher-level features. Raina et al. [105]
proposed to apply sparse coding [70], which is an unsupervised feature construction method,
to learn the higher-level features for transfer learning. Glorot et al. [51] proposed to apply
deep learning to learn the higher-level features for transfer learning. Note that the goal of
deep learning is to generate hierarchical features from lower-level input features, where the
features generated in higher layers are assumed to be more higher level.

1The ‖ · ‖2,1-norm of Θ is defined as ‖Θ‖2,1 =
∑m

i=1 ‖Θi‖12, where Θi is the ith row of Θ.
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1.3.2.5 Other Feature Learning Approaches

In addition to the above three branches of feature learning methods for transfer learning,
Daumé III [39] proposed a simple feature augmentation method for transfer learning in the
field of Natural Language Processing (NLP). The proposed method aims to augment each
of the feature vectors of different domains to a high dimensional feature vector as follows,

x̃S = [xS xS 0],

x̃T = [xT 0 xT ],

where xS and xT are original features vectors of the source and target domains respectively,
and 0 is a vector of zeros, whose length is equivalent to that of the original feature vector.
The idea is to reduce the difference between domains while ensure the similarity between
data within domains is larger than that across different domains. In a follow-up work,
Daumé III [40] extend the feature augmentation method in a semi-supervised learning
manner. Dai et al. [36] proposed a co-clustering based algorithm to discover common feature
clusters, such that label information can be propagated across different domains by using
the common clusters as a bridge. Xue et al. [147] proposed a cross-domain text classification
algorithm that extends the traditional probabilistic latent semantic analysis (PLSA) [58]
algorithm to extract common topics underlying the source and target domain text data for
transfer learning.

1.3.3 Model-parameter-based Approach

The first two categories of approaches to transfer learning are in the data level, where
the instance-based approach tries to reuse the source domain data after re-sampling or
re-weighting, while the feature-representation-based approach aims to find a good feature
representation for both the source and target domains such that based on the new feature
representation source domain data can be reused. Different from these two categories of
approaches, a third category of approaches to transfer learning can be referred to as the
model-parameter-based approach, which assumes that the source and target tasks share
some parameters or prior distributions of the hyper-parameters of the models. A motivation
of the model-parameter-based approach is that a well-trained source model has captured
a lot of structure, which can be transferred to learn a more precise target model. In this
way, the transferred knowledge is encoded into the model parameters. In the rest of this
section, we first introduce a simple method to show how to transfer knowledge across tasks
or domains through model parameters, and then describe a general framework of the model-
parameter-based approach.

Without loss of generality, we assume that the classifier to be learned is linear and can
be written as follows,

f(x) = 〈θ, x〉 = θ>x =

m∑
i=1

θixi.

Given a lot of labeled training data in the source domain and a few labeled training data in
the target domain, we further assume that the source model parameter θS is well-trained,
and our goal to exploit the structure captured by θS to learn a more precise model parameter
θT from the target domain training data.

Evgeniou and Pontil [48] proposed that the model parameter can be decomposed into
two parts, one is referred to as a task specific parameter, and the other is referred to as a
common parameter. In this way, the source and target model parameters θS and θT can be
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decomposed as

θS = θ0 + vS ,

θT = θ0 + vT ,

where θ0 is the common parameter shared by the source and target classifiers, vS and
vT are the specific parameters of the source and target classifiers respectively. Evgenious
and Pontil further proposed to learn the common and specific parameters by solving the
following optimization problem,

arg min
θS ,θT

∑
t∈{S,T}

nt∑
i=1

l(xti , yti , θt) + λΩ(θ0, vS , vT ), (1.9)

where Ω(θ0, vS , vT ) is the regularization term on θ0, vS and vT , and λ > 0 is the corre-
sponding trade-off parameter. The simple idea presented in (1.9) can be generalized to a
framework of the model-parameter-based approach as follows,

arg min
Θ

∑
t∈{S,T}

nt∑
i=1

l(xti , yti , θt) + λ1tr(Θ>Θ) + λ2f(Θ) (1.10)

where Θ = [θS θT ], tr(Θ>Θ) is a regularization on θS and θT to avoid overfiting, and f(Θ) is
to model the correlations between θS and θT , which is used for knowledge transfer. Different
forms of f(Θ) lead to various specific methods. It can be showed that in (1.9), f(Θ) can be
defined by the following form,

f(Θ) =
∑

t∈{S,T}

∥∥∥∥∥∥θt − 1

2

∑
s∈{S,T}

θs

∥∥∥∥∥∥
2

2

. (1.11)

Besides using (1.11), Zhang and Yeung [161] proposed to the following form to model the
correlations between the source and target parameters,

f(Θ) = tr(Θ>Ω−1Θ), (1.12)

where Ω is the covariance matrix to model the relationships between the source and target
domains, which is unknown and needs to be learned with the constraints Ω � 0 and tr(Ω) =
1. Agarwal et al. [1] proposed to use a manifold of parameters to regularize the source and
target parameters as follows,

f(Θ) =
∑

t∈{S,T}

∥∥∥θt − θ̃Mt ∥∥∥2

, (1.13)

where θ̃MS and θ̃MT are the projections of the source parameter θS and target parameter θT
on the manifold of parameters respectively.

Besides the framework introduced in (1.10), there are a number of methods that are
based on non-parametric Bayesian modeling. For instance, Lawrence and Platt [69] pro-
posed an efficient algorithm for transfer learning based on Gaussian Processes (GP) [108].
The proposed model tries to discover common parameters over different tasks, and an in-
formative vector machine was introduced to solve large-scale problems. Bonilla et al. [21]
also investigated multi-task learning in the context of GP. Bonilla et al. proposed to use a
free-form covariance matrix over tasks to model inter-task dependencies, where a GP prior
is used to induce the correlations between tasks. Schwaighofer et al. [118] proposed to use
a hierarchical Bayesian framework (HB) together with GP for transfer learning.
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1.3.4 Relational-information-based Approaches

A fourth category of approaches is referred to as the relational-information-based ap-
proach. Different from the other three categories, the relational-information-based approach
assume that some relationships between objects (i.e., instances) are similar across domains
or tasks, if these common relationships can be extracted, then they can be used for knowl-
edge transfer. Note that in this category of approaches, data in the source and target
domains are not required to be independent and identically distributed (i.i.d.).

Mihalkova et al. [84] proposed an algorithm known as TAMAR to transfer relational
knowledge with Markov Logic Networks (MLNs) [110] across the source and target domains.
MLNs is a statistical relational learning framework, which combines the compact expres-
siveness of first order logic with flexibility of probability. In MLNs, entities in a relational
domain are represented by predicates and their relationships are represented in first-order
logic. TAMAR is motivated by the fact that if two domains are related to each other, there
may exist mappings to connect entities and their relationships from the source domain to
the target domain. For example, a professor can be considered as playing a similar role in
an academic domain as a manager in an industrial management domain. In addition, the
relationship between a professor and his or her students is similar to that between a manager
and his or her workers. Thus, there may exist a mapping from professor to manager and a
mapping from the professor-student relationship to the manager-worker relationship. In this
vein, TAMAR tries to use an MLN learned for the source domain to aid in the learning of
an MLN for the target domain. In a follow-up work, Mihalkova et al. [85] extended TAMAR
in a single-entity-centered manner, where only one entity in the target domain is required
in training.

Instead of mapping first-order predicates across domains, Davis et al. [41] proposed a
method based on second-order Markov logic to transfer relational knowledge. In second-
order Markov Logic, predicates themselves can be variables. The motivation of the method
is that though lower-level knowledge such as propositional logic or first-order logic is domain
or task specific, higher-level knowledge such as second-order logic is general for different do-
mains or tasks. Therefore, this method aims to generate a set of second-order logic formulas
through second-order MLNs from the source domain, and use them as higher-level templates
to instantiate first-order logic formulas in the target domain.

More recently, Li et al. [74] proposed a relation-information-based method for sentiment
analysis across domains. In this method, syntactic relationships between topic and sentiment
words are exploited to propagate label information across the source and target domains.
The motivation behind this method is that though the sentiment and topic words used in
the source and target domains may be different, the syntactic relationships between them
may be similar or the same across domains. Based on a few sentiment and topic seeds in the
target domain, together with the syntactic relationships extracted from the source domain
by using NLP techniques, lexicons of topic and sentiment words can be expanded iteratively
in the target domain.

Note that the relational-information-based approach introduced in this section aims
to explore and exploit relationships between instances instead of the instances themselves
for knowledge transfer. Therefore, the relational-information-based approach can be also
applied to heterogeneous transfer learning problems that will be introduced in the following
section, where the source and target feature or label spaces are different.
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1.4 Heterogeneous Transfer Learning

In the previous section, we have introduced four categories of approaches to homoge-
neous transfer learning. Recently, some researchers have already started to consider transfer
learning across heterogeneous feature spaces or non-identical label spaces. In this section,
we start by giving a definition of heterogeneous transfer learning as follows,

Definition 3. Given a source domain DS and learning task TS, a target domain DT and
learning task TT , heterogeneous transfer learning aims to help improve the learning of the
target predictive function fT (·) in DT using the knowledge in DS and TS, where XS

⋂
XT = ∅

or YS 6= YT .

Based on the definition, heterogeneous transfer learning can be further categorized into
two contexts: 1) approaches to transferring knowledge across heterogeneous feature spaces,
and 2) approaches to transferring knowledge across different label spaces.

1.4.1 Heterogeneous Feature Spaces

How to transfer knowledge successfully across different feature spaces is an interesting
issue. It is related to multi-view learning [20], which assumes that the features for each
instance can be divided into several views, each with its own distinct feature space. Though
multi-view learning techniques can be applied to model multi-modality data, it requires each
instance in one view must have its correspondence in other views. In contrast, transfer learn-
ing across different feature spaces aims to solve the problem where the source and target
domain data belong to two different feature spaces such as image vs. text, without corre-
spondences across feature spaces. Recently, some heterogeneous transfer learning methods
have been developed and applied to various applications, such as cross-language text clas-
sification [101, 77, 135], image classification [168, 33, 64], and object recognition [67, 115].

Transfer learning methods across heterogeneous feature spaces can be further classified
into two categories. A first context of approaches is to learn a pair of feature mappings
to transform the source and target domain heterogeneous data to a common latent space.
Shi et al. [124] proposed a Heterogenous Spectral Mapping (HeMap) method to learn the
pair of feature mappings based on spectral embedding, where label information is discarded
in learning. Wang and Mahadevan [135] proposed a manifold alignment method to align
heterogenous features in a latent space based on a manifold regularization term, which is
denoted by DAMA in the sequel. In DAMA, label information is exploited to construct
similarity matrix for manifold alignment. However, DADA only works on the data that
have strong manifold structures, which limits its transferability on those data where the
manifold assumption does not hold. More recently, Duan et al. [44] proposed a Heterogenous
Feature Augmentation (HFA) method to augment homogeneous common features learned
by a SVM-style approach with heterogeneous features of the source and target domains for
transfer learning. The proposed formulation results in a semidefinite program (SDP), whose
computational cost is very expensive.

Another context is to learn a feature mapping to transform heterogenous data from
one domain to another domain directly. In [34, 101], the feature mappings are obtained
based on some translators to construct corresponding features across domains. However,
in general, such translators for corresponding features is not available and difficult to be
constructed in many real-world applications. Kulis [67] proposed an Asymmetric Regular-
ized Cross-domain transformation (ARC-t) method to learn a asymmetric transformation
across domains based on metric learning. Similar to DAMA, ARC-t also utilizes the label
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information to construct similarity and dissimilarity constraints between instances from the
source and target domains respectively. The formulated metric learning problem can be
solved by an alternating optimization algorithm.

1.4.2 Different Label Spaces

In some real-world scenarios, the label spaces or categories of the source and target
domain may not be the same. In this case, it is crucial to develop transfer learning methods
to propagate knowledge across labels or categories. A common idea behind most existing
approaches in this setting is to explore and exploit the relationships between the source
and target categories such that label information can be propagated across domains. Shi et
al. [123] proposed a risk-sensitive spectral partition (RSP) method to align the source and
target categories based on spectral partitioning. Dai et al. [35] proposed a EigenTransfer
framework to use a three-layer bipartite graph to model the relationships between instances,
features and categories. Through the three-layer bipartite graph, label information can be
propagated across different categories. Quadrianto et al. [103] proposed to maximize mutual
information between labels across domains to identify their correspondences. Qi et al. [102]
proposed an optimization algorithm to learn a parametric matrix to model the correlations
between labels across domains based on the similarities between cross-domain input data.
Xiang et al. [144] proposed a novel framework named source-selection-free transfer learning
(SSFTL) to achieve knowledge transfer from a Web-scale auxiliary resource, e.g., Wikipedia,
for universal text classification. The idea of SSFTL is to first pre-train a huge number of
source classifiers from the auxiliary resource offline, then when a target task is given, whose
labels may not be observed in the auxiliary resource, SSFTL makes use of social tagging
data, e.g., Flick, to bridge the auxiliary labels and the target labels, and finally select
relevant source classifiers to solve the target task automatically.

1.5 Transfer Bounds and Negative Transfer

For theoretical study of transfer learning, an important issue is to recognize the limit of
the power of transfer learning. So far, most theoretical studies are focused on homogeneous
transfer learning. There are some research works analyzing the generalization bound in
a special setting of homogeneous transfer learning where only the marginal distributions,
PS(x) and PT (x), of the source and target domain data are assumed to be different [13,
17, 12, 14]. Though the generalization bounds proved in different literatures are different
slightly, there is a common conclusion that the generalization bound of a learning model
in this setting consists of two terms, one is the error bound of the learning model on the
source domain labeled data, the other is the bound on the distance between the source and
target domains, more specifically the distance between marginal probability distributions
between domains.

In a more general setting homogeneous transfer learning where the predictive distribu-
tions, PS(y|x) and PT (y|x), of the source and target domain data can be different, theoretical
studies are more focused on the issue of transferability. That is to ask how to avoid negative
transfer and then ensure a “safe transfer” of knowledge. Negative transfer happens when the
source domain/task data contribute to the reduced performance of learning in the target
domain/task. Though how to avoid negative transfer is a very important issue, few research
works were proposed on this issue in the past. Rosenstein et al. [114] empirically showed
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that if two tasks are very dissimilar, then brute-force transfer may hurt the performance of
the target task.

Recently, some research works have been explored to analyze relatedness among tasks
using task clustering techniques, such as [15, 11], which may help provide guidance on
how to avoid negative transfer automatically. Bakker and Heskes [11] adopted a Bayesian
approach in which some of the model parameters are shared for all tasks and others are
more loosely connected through a joint prior distribution that can be learned from the data.
Thus, the data are clustered based on the task parameters, where tasks in the same cluster
are supposed to be related to each other. Hassan Mahmud and Ray [80] analyzed the case of
transfer learning using Kolmogorov complexity, where some theoretical bounds are proved.
In particular, they used conditional Kolmogorov complexity to measure relatedness between
tasks and transfer the “right” amount of information in a sequential transfer learning task
under a Bayesian framework. Eaton et al. [46] proposed a novel graph-based method for
knowledge transfer, where the relationships between source tasks are modeled by a graph
using transferability as the metric. To transfer knowledge to a new task, one needs to
map the target task to the graph and learn a target model on the graph by automatically
determining the parameters to transfer to the new learning task.

More recently, Argyriou et al. [7] considered situations in which the learning tasks can
be divided into groups. Tasks within each group are related by sharing a low-dimensional
representation, which differs among different groups. As a result, tasks within a group can
find it easier to transfer useful knowledge. Jacob et al. [60] presented a convex approach
to cluster multi-task learning by designing a new spectral norm to penalize over a set of
weights, each of which is associated to a task. Bonilla et al. [21] proposed a multi-task
learning method based on Gaussian Process (GP), which provides a global approach to
model and learn task relatedness in the form of a task covariance matrix. However, the
optimization procedure introduced in [21] is non-convex, whose results may be sensitive to
parameter initialization. Motivated by [21], Zhang and Yeung [161] proposed an improved
regularization framework to model the negative and positive correlation between tasks,
where the resultant optimization procedure is convex.

The above works [15, 11, 7, 60, 21, 161] on modeling task correlations are from the
context of multi-task learning. However, in transfer learning, one may be particularly inter-
ested in transferring knowledge from one or more source tasks to a target task rather than
learning these tasks simultaneously. The main concern of transfer learning is the learning
performance in the target task only. Thus, we need to give an answer to the question that
given a target task and a source task, whether transfer learning techniques should be ap-
plied or not. Cao et al. [23] proposed an Adaptive Transfer learning algorithm based on GP
(AT-GP), which aims to adapt transfer learning schemes by automatically estimating the
similarity between the source and target tasks. In AT-GP, a new semi-parametric kernel is
designed to model correlations between tasks, and the learning procedure targets at improv-
ing performance of the target task only. Seah et al. [120] empirically studied the negative
transfer problem by proposing a predictive distribution matching classifier based on SVMs
to identify the regions of relevant source domain data where the predictive distributions
maximally align with that of the target domain data, and thus avoid negative transfer.
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1.6 Other Research Issues

Besides the negative transfer issue, in recent years, there are several other research issues
of transfer learning that have attracted more and more attention from the machine learning
community, which are summarized in the following sections.

1.6.1 Binary Classification vs. Multi-class Classification

Most existing transfer learning methods are proposed for binary classification. For multi-
class classification problems, one has to first reduce the multi-class classification task into
multiple binary classification tasks using the one-vs-rest or one-vs-one strategy, and then
train multiple binary classifiers to solve them independently. Finally, predictions are made
according to the outputs of all binary classifiers. In this way, the relationships between
classes, which indeed can be used to further boost the performance in terms of classification
accuracy, may not be fully explored and exploited. Recently, Pan et al. [94] proposed a
Transfer Joint Embedding (TJE) method to map both the features and labels from the
source and target domains to a common latent space such as the relationships between
labels can be fully exploited for transfer learning in multi-class classification problems.

1.6.2 Knowledge Transfer from Multiple Source Domains

In Sections 1.3-1.4, the transfer learning methods described are focused on one-to-one
transfer, which means that there are only one source domain and one target domain. How-
ever, in some real-world scenarios, we may have multiple sources at hand. Developing al-
gorithms to make use of multiple sources for help learning models in the target domain is
useful in practice. Yang et al. [150] and Duan et al. [42] proposed algorithms to learn a
new SVM for the target domains by adapting SVMs learned from multiple source domains.
Luo et al. [79] proposed to train a classifier for use in the target domain by maximizing the
consensus of predictions from multiple sources. Mansour et al. [81] proposed a distribution
weighted linear combination framework for learning from multiple sources. The main idea
is to estimate the data distribution of each source to reweight the data of different source
domains. Yao and Doretto [155] extended TrAdaBoost in a manner of multiple source do-
mains. Theoretical studies on transfer learning from multiple source domains have also been
presented in [81, 82, 12].

1.6.3 Transfer Learning meets Active Learning

As mentioned at the beginning of this Chapter, both active learning and transfer learn-
ing aim to learn a precise model with minimal human supervision for a target task. Several
researchers have proposed to combine these two techniques together in order to learn a more
precise model with even less supervision. Liao et al. [76] proposed a new active learning
method to select the unlabeled data in a target domain to be labeled with the help of the
source domain data. Shi et al. [122] applied an active learning algorithm to select important
instances for transfer learning with TrAdaBoost [38] and standard SVM. In [26], Chan and
NG proposed to adapt existing Word Sense Disambiguation (WSD) systems to a target do-
main by using domain adaptation techniques and employing an active learning strategy [71]
to actively select examples from the target domain to be annotated. Harpale and Yang [56]
proposed an active learning framework for the multi-task adaptive filtering [112] problem.
They first applied a multi-task learning method to adaptive filtering, and then explore vari-
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ous active learning approaches to the adaptive filters to improve performance. Li et al. [75]
proposed a novel multi-domain active learning framework to jointly actively query data in-
stances from all domains to be labeled to build individual classifiers for each domain. Zhao et
al. [163], proposed a framework to construct entity correspondences with limited budget by
using active learning to facilitate knowledge transfer across different recommender systems.

1.7 Applications of Transfer Learning

Recently, transfer learning has been applied successfully to many classification problems
in various application areas, such as Natural Language Processing (NLP), Information Re-
trieval (IR), recommendation systems, computer vision, image analysis, multimedia data
mining, bioinformatics, activity recognition and wireless sensor networks.

1.7.1 NLP Applications

In the field of NLP, transfer learning, which is known as domain adaptation, has been
widely studied for solving various tasks, such as name entity recognition [53, 9, 39, 111, 140,
141, 94], part-of-speech tagging [4, 19, 62, 39], sentiment classification [18, 92, 51], sentiment
lexicon construction [74], word sense disambiguation [26, 2], coreference resolution [149], and
relation extraction [61].

1.7.2 Web-based Applications

Information Retrieval (IR) is another application area where transfer learning techniques
have been widely studied and applied. Typical Web applications of transfer learning include
text classification [106, 16, 36, 37, 54, 137, 147, 29, 145, 153, 143], advertising [33, 32], learn
to rank [10, 134, 28, 50] and recommender systems [73, 72, 22, 160, 99].

1.7.3 Sensor-based Applications

Transfer learning has also been explored to solve WiFi-based localization and sensor-
based activity recognition problems [151]. For example, transfer learning techniques have
been proposed to transfer WiFi-based localization models across time periods [91, 166, 156],
space [93, 136] and mobile devices [165], respectively. Rashidi and Cook [107] and Zheng
et al. [164] proposed to apply transfer learning techniques for solving indoor sensor-based
activity recognition problems respectively.

1.7.4 Applications to Computer Vision

In the past decade, transfer learning techniques have also attracted more and more
attention in the fields of computer vision, image and multimedia analysis. Applications of
transfer learning in these fields include image classification [142, 126, 113, 131, 157, 68],
image retrieval [78, 55, 31], face verification from images [138], age estimation from facial
images [162], image semantic segmentation [133], video retrieval [148, 55], video concept
detection [150, 43], event recognition from videos [45], and object recognition [115, 67].
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1.7.5 Applications to Bioinformatics

In Bioinformatics, motivated by that different biological entities, such as organisms,
genes, etc, may be related to each other from a biological point of view, some research works
have been proposed to apply transfer learning techniques to solve various computational
biological problems, such as identifying molecular association of phenotypic responses [159],
splice site recognition of eukaryotic genomes [139], mRNA splicing [119], protein subcellular
location prediction [146] and genetic association analysis [154].

1.7.6 Other Applications

Besides the above applications, Zhuo et al. [169] studied how to transfer domain knowl-
edge to learn relational action models across domains in automated planning. Chai et al. [25]
studied how to apply a GP based transfer learning method to solve the inverse dynamics
problem for a robotic manipulator [25]. Alamgir et al. [3] applied transfer learning tech-
niques to solve brain-computer interfaces problems. In [109], Raykar et al. proposed to jointly
learn multiple different but conceptually related classifiers for computer aided design (CAD)
using transfer learning. Nam et al. [87] adapted a transfer learning approach to cross-project
defect prediction in the field of software engineering.

1.8 Concluding Remarks

In this chapter, we have reviewed a number of approaches to homogeneous and het-
erogeneous transfer learning based on different categories. Specifically, based on “what to
transfer”, approaches to homogeneous transfer learning can be classified into four cate-
gories, namely the instance-based approach, the feature-representation-based approach, the
model-parameter-based approach, and the relational-information-based approach. Based on
whether the feature spaces or label spaces between the source and target domains are dif-
ferent or not, heterogeneous transfer learning can be further classified into two contexts:
namely transfer learning across heterogeneous feature spaces, and transfer learning across
different label spaces. Furthermore, we have also discussed current theoretical studies on
transfer learning and some research issues of transfer learning. Finally, we have summarized
classification applications of transfer learning in diverse knowledge engineering areas.

Transfer learning is still at an early but promising stage. As described in Sections 1.5-1.6,
there exist many research issues needed to be addressed. Specially, though there are some
theoretical studies on homogeneous transfer learning, theoretical studies on heterogeneous
transfer learning are still missing. Furthermore, most existing works on combining transfer
learning and active learning consists two steps, one is for transfer learning and the other is
for active learning. How to integrate them into a unified framework is still an open issue.
Finally, in the future, we expect to see more applications of transfer learning in novel areas.
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